We introduce a machine-learning (ML)-based weather simulator--called "GraphCast"--which outperforms the most accurate deterministic operational medium-range weather forecasting system in the world, as well as all previous ML baselines. GraphCast is an autoregressive model, based on graph neural networks and a novel high-resolution multi-scale mesh representation, which we trained on historical weather data from the European Centre for Medium-Range Weather Forecasts (ECMWF)'s ERA5 reanalysis archive. It can make 10-day forecasts, at 6-hour time intervals, of five surface variables and six atmospheric variables, each at 37 vertical pressure levels, on a 0.25-degree latitude-longitude grid, which corresponds to roughly 25 x 25 kilometer resolution at the equator. Our results show GraphCast is more accurate than ECMWF's deterministic operational forecasting system, HRES, on 90.0% of the 2760 variable and lead time combinations we evaluated. GraphCast also outperforms the most accurate previous ML-based weather forecasting model on 99.2% of the 252 targets it reported. GraphCast can generate a 10-day forecast (35 gigabytes of data) in under 60 seconds on Cloud TPU v4 hardware. Unlike traditional forecasting methods, ML-based forecasting scales well with data: by training on bigger, higher quality, and more recent data, the skill of the forecasts can improve. Together these results represent a key step forward in complementing and improving weather modeling with ML, open new opportunities for fast, accurate forecasting, and help realize the promise of ML-based simulation in the physical sciences.
translated by 谷歌翻译
Climate change is causing the intensification of rainfall extremes. Precipitation projections with high spatial resolution are important for society to prepare for these changes, e.g. to model flooding impacts. Physics-based simulations for creating such projections are very computationally expensive. This work demonstrates the effectiveness of diffusion models, a form of deep generative models, for generating much more cheaply realistic high resolution rainfall samples for the UK conditioned on data from a low resolution simulation. We show for the first time a machine learning model that is able to produce realistic samples of high-resolution rainfall based on a physical model that resolves atmospheric convection, a key process behind extreme rainfall. By adding self-learnt, location-specific information to low resolution relative vorticity, quantiles and time-mean of the samples match well their counterparts from the high-resolution simulation.
translated by 谷歌翻译
大数据和深度学习的结合是一项破坏世界的技术,如果正确使用,可以极大地影响任何目标。随着深度学习技术中大量医疗保健数据集和进步的可用性,系统现在可以很好地预测任何健康问题的未来趋势。从文献调查中,我们发现SVM用于预测心力衰竭的情况,而无需关联客观因素。利用电子健康记录(EHR)中重要历史信息的强度,我们利用长期记忆(LSTM)建立了一个智能和预测的模型,并根据该健康记录预测心力衰竭的未来趋势。因此,这项工作的基本承诺是使用基于患者的电子药用信息的LSTM来预测心脏的失败。我们已经分析了一个数据集,该数据集包含在Faisalabad心脏病学研究所和Faisalabad(巴基斯坦旁遮普邦)的盟军医院收集的299例心力衰竭患者的病历。这些患者由105名女性和194名男性组成,年龄在40岁和95岁之间。该数据集包含13个功能,这些功能报告了负责心力衰竭的临床,身体和生活方式信息。我们发现我们的分析趋势越来越多,这将有助于促进心中预测领域的知识。
translated by 谷歌翻译
近年来,多任务学习在各种应用程序中都取得了巨大的成功。尽管这些年来,单个模型培训已承诺取得出色的成果,但它忽略了有价值的信息,这些信息可能有助于我们更好地估计一个指标。在与学习相关的任务下,多任务学习能够更好地概括模型。我们试图通过在相关任务和归纳转移学习之间共享功能来增强多任务模型的功能映射。此外,我们的兴趣是学习各种任务之间的任务关系,以从多任务学习中获得更好的收益。在本章中,我们的目标是可视化现有的多任务模型,比较其性能,用于评估多任务模型性能的方法,讨论在各个领域的设计和实施过程中所面临的问题,以及他们实现的优势和里程碑
translated by 谷歌翻译
单细胞RNA-seq数据集的大小和复杂性正在增长,从而可以研究各种生物/临床环境中的细胞组成变化。可扩展的降低性降低技术需要消除它们的生物学变异,同时考虑技术和生物混杂因素。在这项工作中,我们扩展了一种流行的概率非线性维度降低的方法,即高斯过程潜在变量模型,以扩展到大量的单细胞数据集,同时明确考虑技术和生物混杂因素。关键思想是使用增强的内核,该内核可以保留下限的可分式性,从而允许快速随机变化推断。我们证明了其在Kumasaka等人中重建先天免疫的潜在潜在签名的能力。 (2021)训练时间较低9倍。我们进一步分析了一个共同数据集并在130个人群中证明了该框架,该框架可以在捕获可解释的感染签名的同时进行数据集成。具体而言,我们探讨了互联的严重程度,作为优化患者分层并捕获疾病特异性基因表达的潜在维度。
translated by 谷歌翻译
当前的时空动作管检测方法通常将一个给定键框的边界框提案扩展到附近帧的3D颞轴和池特征。但是,如果演员的位置或形状通过大型的2D运动和可变性,由于大型摄像机运动,大型演员形状变形,快速演员的动作等,这种合并就无法积累有意义的时空特征。在这项工作中,我们旨在研究在大动作下的动作检测中观察到Cuboid感知特征聚集的性能。此外,我们建议通过跟踪参与者并沿各个轨道进行时间特征聚集来增强演员特征表示。我们在各种固定时间尺度的动作管/轨道框之间使用相交的行动者(IOU)定义了演员运动。随着时间的推移,具有较大运动的动作将导致较低的IOU,并且较慢的动作将保持更高的IOU。我们发现,轨道感知功能聚集始终取得了巨大的改善,尤其是对于与Cuboid感知的基线相比,在大型运动下进行的动作。结果,我们还报告了大规模多运动数据集的最先进。
translated by 谷歌翻译
当与分支和界限结合使用时,结合的传播方法是正式验证深神经网络(例如正确性,鲁棒性和安全性)的最有效方法之一。但是,现有作品无法处理在传统求解器中广泛接受的切割平面限制的一般形式,这对于通过凸出凸松弛的加强验证者至关重要。在本文中,我们概括了结合的传播程序,以允许添加任意切割平面的约束,包括涉及放宽整数变量的限制,这些变量未出现在现有的结合传播公式中。我们的广义结合传播方法GCP-crown为应用一般切割平面方法}开辟了一个机会进行神经网络验证,同时受益于结合传播方法的效率和GPU加速。作为案例研究,我们研究了由现成的混合整数编程(MIP)求解器生成的切割平面的使用。我们发现,MIP求解器可以生成高质量的切割平面,以使用我们的新配方来增强基于界限的验证者。由于以分支为重点的绑定传播程序和切削平面的MIP求解器可以使用不同类型的硬件(GPU和CPU)并行运行,因此它们的组合可以迅速探索大量具有强切割平面的分支,从而导致强大的分支验证性能。实验表明,与VNN-Comp 2021中最佳工具相比,我们的方法是第一个可以完全求解椭圆形的基准并验证椭圆21基准的两倍的验证者,并且在oval21基准测试中的最佳工具也明显超过了最先进的验证器。广泛的基准。 GCP-Crown是$ \ alpha $,$ \ beta $ -Crown验证者,VNN-COMP 2022获奖者的一部分。代码可在http://papercode.cc/gcp-crown上获得
translated by 谷歌翻译
事件摄像机是由生物启发的传感器,比传统摄像机具有优势。它们不同步,用微秒的分辨率对场景进行采样,并产生亮度变化。这种非常规的输出引发了新型的计算机视觉方法,以释放相机的潜力。我们解决了SLAM的基于事件的立体3D重建问题。大多数基于事件的立体声方法都试图利用相机跨相机的高时间分辨率和事件同时性,以建立匹配和估计深度。相比之下,我们研究了如何通过融合有效的单眼方法来融合差异空间图像(DSIS)来估计深度。我们开发融合理论,并将其应用于设计产生最先进结果的多相机3D重建算法,正如我们通过与四种基线方法进行比较并在各种可用数据集上进行测试的确认。
translated by 谷歌翻译
基于网络形态的神经体系结构搜索(NAS)是最有效的方法之一,但是,知道何时何地添加新的神经元或删除非功能功能的方法通常留给黑盒增强学习模型。在本文中,我们提出了一种新的基于网络形态的NAS,称为NOISY启发式NAS,该NAS使用了从手动开发神经网络模型中学到的启发式方法,并受到生物神经元动力学的启发。首先,我们随机添加新的神经元,并修剪一些神经元,以选择最佳的合身神经元。其次,我们使用隐藏单元与输入输出连接数的关系控制网络中的层数。我们的方法可以在线增加或降低模型的容量或非线性,该模型由用户指定了一些元参数。我们的方法在玩具数据集以及MNIST,CIFAR-10和CIFAR-100等实际数据集上概括了。性能与具有相似参数的手工设计架构Resnet-18相当。
translated by 谷歌翻译
通常,在自然语言处理领域,识别指定实体是一项实用且具有挑战性的任务。由于混合的性质导致语言复杂性,因此在代码混合文本上命名的实体识别是进一步的挑战。本文介绍了CMNERONE团队在Semeval 2022共享任务11 Multiconer的提交。代码混合的NER任务旨在识别代码混合数据集中的命名实体。我们的工作包括在代码混合数据集上的命名实体识别(NER),来利用多语言数据。我们的加权平均F1得分为0.7044,即比基线大6%。
translated by 谷歌翻译